Detect Trojan Source Attack

Creation of bidichk and
integration in golangci-lint

Barner Go — 07.12.2021

About myself — Lucas Bremgartner

| work in IT since more than 20 years in several different roles.

Currently | work as contractor for different clients, usually in roles like architect, coach or
software engineer. My fields of expertise are cloud native applications (backend), cloud
infrastructure and automation as well as the Elastic Stack. My programming language of
choice is Go. | am an active part of the Go community since ~7 years.

Maintainer of:
rootcerts, logstash-config, errchkjson, mna/pigeon, magnusbaeck/logstash-filter-verifier

You find me online:
github.com/breml | @_breml_ | linkedin.com/in/lucas-bremgartner/

https://github.com/breml/rootcerts
https://github.com/breml/logstash-config
https://github.com/breml/errcheck
https://github.com/mna/pigeon
https://github.com/magnusbaeck/logstash-filter-verifier
https://github.com/breml
https://twitter.com/_breml_
https://linkedin.com/in/lucas-bremgartner/

Pop Quiz: What does this program print? We will find out.

package main

import "fmt"

func main () {
var accessLevel = "user"
if accesslevel !'= "user" { // Check if admin

fmt.Println("You are an admin.")

} else {

fmt.Println("You are a user.")

suchen

@ e

Lehnt eudh Zur
auf die ne eudh

Hw,ur\g»vmmname, a
v Wisse™ N\ob\\es Secnv'\w Deve\aver Enterlammenl Ne’.lpo\\(\\k \Ninst.\\ak Juuma\ News(\c\(m
?avﬁ-'»'m W\HDDWS\\ MVPTOWMRUMGEH m\MFMN APPLE VGDLAST$\
monioe .W,.ﬂmmswWmmm,mmmmm
7 4 g f m:mauhe‘\w @
& > wur fo¢ urze Zeit w 2 et
N\g\'e\ier urce code \\'0\3\’\\5\9(9\’\,
der 1ot \ ussient
AungndvonS achste! cd konn® A“g,re‘\(ere‘wa
\—\m‘em\ve \codes e S\chemew(sfcrsd\em nicht auffalle™
@ e a @ o)
s fiir
Deuts
hlang

st 7M™

inDs/n Job
er IT!

A
nderson dis

oEiEG
ddin
“Ear-arbl(rag multiple layers
weican reord’y reordering of of LRI am
ler sourt strings.”
ce col \
de characters in
sucha)
way that
t the 1

qams’
et0
displ
lay ord
ler alst
0 re|
presents syntact
ically vali
valid s
ource

code.”

y o

s 0t

yal compiere ™ prodf
—areV erab!

yirtwal
ofware
o
"In eff
fect,

, we anagram

program A int¢

0 program B."

Concel
rmingly,
, the ac
ademic:

s
say that Microsoft
I
ode and
Apple’;

's Xcode

Still sure about your previous answer?

package main
import "fmt"
func main() {
var accessLevel = "user"
if accesslLevel '= "user" { // Check if admin
fmt.Println("You are an admin.")
} else {

fmt.Println("You are a user.")

Let’s find out:
} https://play.golang.org/p/LuncON17_2g

https://play.golang.org/p/LuncON17_2g

What the compiler sees

package main
import "fmt"
func main() {
var accessLevel = "user"
if accessLevel != "user[U+202E] [U+2066]// Check if admin[U+2069] [U+2066]" {
fmt.Println("You are an admin.")
} else {

fmt.Println("You are a user.")

Bidirectional text / Unicode Bidi Algorithm

Bidirectional text contains two text directionalities, right-to-left and left-to-right

The Bidi algorithm translates the logical order (in memory, always from left-to-right)
into the visual order.

Each Unicode character has a type: strong, weak, neutral and explicit formatting.
Explicit formatting characters are special Unicode sequences, that direct the Bidi
algorithm to modify its default behavior. These are subdivided into “marks”,

“embeddings”, “isolates”, and “overrides”.
o Inthe previous example:
[U+202E] RIGHT-TO-LEFT-OVERRIDE
[U+2066] LEFT-TO-RIGHT-ISOLATE
[U+2069] POP-DIRECTIONAL-ISOLATE

See also: https://en.wikipedia.org/wiki/Bidirectional text

https://en.wikipedia.org/wiki/Bidirectional_text

“Trojan Source” Vulnerability — Distilled

Researchers: Nicholas Boucher and Ross Anderson, Official Website: https://www.trojansource.codes/

CVE-2021-42574 | nist.gov: CVSS v3.x: 9.8 (Critical) | CVSS v2.x: 7.5 (High)

Affected Language: C, C++, C#, JavaScript, Java, Rust, Go, and Python (+ suspect, that it will work in most modern languages)
Timeline (from Rust Security Team):

2021-07-25: we received the report and started working on a fix.

2021-09-14: the date for the embargo lift (2021-11-01) is communicated to us.

2021-10-17: performed an analysis of all the source code ever published to crates.io to check for the
presence of this attack.

2021-11-01: embargo lifts, the vulnerability is disclosed and Rust 1.56.1 is released.

Is it new? Nah, Go issue #20209 from 05.05.2017 already mentions this kind of attack.

But: Give a vulnerability a good name and you can create quite some fuss in the news.

https://www.trojansource.codes/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-42574
https://nvd.nist.gov/vuln/detail/CVE-2021-42574
https://github.com/golang/go/issues/20209

The attack vector

Use Unicode control characters to reorder tokens in source code.

e These visually reordered tokens can be used to display logic that, while
semantically correct, diverges from the logic presented by the logical ordering
of source code tokens.

e Compilers and interpreters adhere to the logical ordering of source code, not
the visual order.

e The attack is to use control characters embedded in comments and strings to
reorder source code characters in a way that changes its logic.

e Examples of interesting Unicode characters:

RIGHT-TO-LEFT-OVERRIDE (U+202FE), LEFT-TO-RIGHT-ISOLATE
(U+2066), POP-DIRECTIONAL-ISOLATE (U+2069)

https://unicode-table.com/en/202E/
https://unicode-table.com/en/2066/
https://unicode-table.com/en/2066/
https://unicode-table.com/en/2069/

Attack Mitigation

e Fix the compiler:
Russ Cox: the compiler is the

wrong place

e Make visible in editors

e Make visible in review tools
(PR for The Go Playground,
anyone)

e Have a linter
(challenge accepted)

commenting-out.go - Go - Visual Studio Code =

File | Edit Selection View Go Run Terminal Help

isAd = isAdmin || isSuperAdmin
[U+202E] | [U+2066] [U+2069] [U+2066]
fmt.Println are an i
[U+202E] { [U+2066]

X fPmain O Go11628 ®4A0 [Connect § Lucasf #> Live Share LF Go A\ GoUpdateAvailable & 0Q
¥ main ~ trojan-source / Go / commenting-out.go . Go tofile
@ nickboucher P e D History
A1 contributor

Raw Blame (L5 4 o

ins bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode

https://research.swtch.com/trojan
https://research.swtch.com/trojan

How to write a linter for Go

e Usego/analysis, acommon interface for all linters (other linters are not
accepted by golangci-lint)
Define an analysis, which is a variable of type *analysis.Analyzer

e |Implement the linter logic in the Analyzer’s Run function
func (pass *Pass) (interface{}, error)

e Pass provides information to the Analyzer’s Run function about the
package being analyzed.

e Report findings in the Run function with
pass.Reportf (pos, “message”).

Tutorial linked on golangci-lint “new linters”: Writing Useful go/analysis Linter

https://pkg.go.dev/golang.org/x/tools/go/analysis
https://golangci-lint.run/contributing/new-linters/
https://disaev.me/p/writing-useful-go-analysis-linter/

bidichk — Run function

var Analyzer = &analysis.Analyzer{
Name: "bidichk",
Doc: '"Checks for dangerous unicode character sequences",
Run: run,

func (b bidichk) run(pass *analysis.Pass) (interface{}, error) {
var err error
pass.Fset.Iterate (func(f *token.File) bool {
if strings.HasPrefix(f.Name (), "$GOROOT") ({
return true

}
return b.check (f.Name (), f£.Pos(0), pass) == nil

})

return nil, err

bidichk — inspect a file

func (b bidichk) check(filename string, pos token.Pos, pass *analysis.Pass) error {
body, err := os.ReadFile(filename)
if err '= nil { return err }

for name, r := range b.disallowedRunes ({

start := 0

for {
idx := bytes.IndexRune (body[start:], r)
if idx == -1 { break }
start += idx
pass.Reportf (pos+token.Pos (start),

"found dangerous unicode character sequence %s'", name)

start += utf8.Runelen (r)

}
}

return nil

go/analysis based linter — Summary

e The initial version of the linter was ~60 LOC + ~10 LOC in main.go (it has
grown a little bit since then).

e go/analysis does the heavy lifting and provides convenience functions for the
main program of the linter as well as the unit tests.

e A proof-of-concept for a simple linter can be done in less than an hour.

Add bidichk to golangci-lint

The necessary steps to add a new linter to golangci-lint are well documented in
https://golangci-lint.run/contributing/new-linters/

The main steps are:

e Add some test data / test cases
e Add the linter integration
e Add the linter integration to the linter manager

Adding 3 files (+ updating go.{mod,sum}) is enough for a basic integration.

Initial PR for bidichk (~ 30 LOC including a test):
https://qithub.com/golangci/golangci-lint/pull/2330

https://golangci-lint.run/contributing/new-linters/
https://github.com/golangci/golangci-lint/pull/2330

Questions

ANY QUESTIONS?

Links

bidichk: https://github.com/breml/bidichk
PR for golangci-lint: https://qithub.com/golangci/golangci-lint/pull/2330

golangci-lint: https://golangci-lint.run/ | https://github.com/golangci/golangci-lint

Trojan Source: https://www.trojansource.codes/ | CVE-2021-42574 | nist.gov

Trojan Source & Go: #20209, Russ Cox: the compiler is the wrong place

Researchers: https://qgithub.com/nickboucher, https://www.cl.cam.ac.uk/~rja14

Bidirectional text: https://en.wikipedia.org/wiki/Bidirectional text

https://github.com/breml/bidichk
https://github.com/golangci/golangci-lint/pull/2330
https://golangci-lint.run/
https://github.com/golangci/golangci-lint
https://www.trojansource.codes/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-42574
https://nvd.nist.gov/vuln/detail/CVE-2021-42574
https://github.com/golang/go/issues/20209
https://research.swtch.com/trojan
https://github.com/nickboucher
https://www.cl.cam.ac.uk/~rja14
https://en.wikipedia.org/wiki/Bidirectional_text

